

Available online at www.sciencedirect.com



Carbohydrate RESEARCH

Carbohydrate Research 339 (2004) 1557–1560

#### Note

# Structure of the O-polysaccharide of Providencia stuartii O49

Ivan S. Bushmarinov,<sup>a</sup> Olga G. Ovchinnikova,<sup>a,\*</sup> Nina A. Kocharova,<sup>a</sup> Aleksandra Blaszczyk,<sup>b</sup> Filipp V. Toukach,<sup>a</sup> Agnieszka Torzewska,<sup>b</sup> Alexander S. Shashkov,<sup>a</sup> Yuriy A. Knirel<sup>a</sup> and Antoni Rozalski<sup>b</sup>

<sup>a</sup>N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia

<sup>b</sup>Department of Immunobiology of Bacteria, Institute of Microbiology and Immunology, University of Lodz, PL 90-237 Lodz, Poland

Received 1 March 2004; accepted 23 March 2004

**Abstract**—The O-specific polysaccharide chain (O-antigen) of the lipopolysaccharide (LPS) of *Providencia stuartii* O49 was studied using sugar and methylation analyses along with <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy, including two-dimensional COSY, TOCSY, ROESY, H-detected <sup>1</sup>H, <sup>13</sup>C HSQC and HMBC experiments. The polysaccharide was found to have the trisaccharide repeating unit with the following structure:

 $\rightarrow$ 6)- $\beta$ -D-Gal $p(1\rightarrow 3)$ - $\beta$ -D-Gal $pNAc(1\rightarrow 4)$ - $\alpha$ -D-Gal $p(1\rightarrow$ 

© 2004 Elsevier Ltd. All rights reserved.

Keywords: Lipopolysaccharide; O-Polysaccharide; Bacterial polysaccharide structure; Providencia stuartii

Bacteria of the genus Providencia belongs to the Enterobacteriaceae family; they are serologically related to Escherichia coli, Proteus, Morganella, Salmonella and Shigella. Currently, the genus consists of five species: P. alcalifaciens, P. heimbachae, P. rettgerii, P. rustigianii and Providencia stuartii. Being a component of the normal intestinal flora, in favourable conditions bacteria P. stuartii can cause urinary tract infections and P. alcalifaciens and P. rustigianii various infections, including traveller's diarrhoea. The serological O-specificity of *Providencia* is defined by the structure of the O-antigen (O-polysaccharide, PS), being a part of the lipopolysaccharide (LPS, endotoxin), one of the major components of the outer membrane of Gram-negative bacteria. Studies of the chemical structures and the serological specificity of the O-antigens aim at the elucidation of the molecular basis of the serological classification of Providencia species. The serological classification

scheme of *P. alcalifaciens*, *P. rustigianii* and *P. stuartii* includes 62 O-serogroups.<sup>1,2</sup> At present, the O-polysaccharides structures of *P. stuartii* O4,<sup>3</sup> O18,<sup>4</sup> O33<sup>5</sup> have been established. Now we report on the structure of the O-polysaccharide of *P. stuartii* O49.

The lipopolysaccharide was isolated from bacterial cells by the phenol-water procedure<sup>6</sup> and degraded by mild acid hydrolysis to give the O-polysaccharide, which was isolated by GPC on Sephadex G-50. Monosaccharide analysis of the polysaccharide revealed Gal and GalN in the ratio ~2:1. An enzymatic assay with D-galactose oxidase showed that the O-polysaccharide contains D-Gal and D-GalN. The D-configuration of Gal was confirmed by GLC of the acetylated glycosides with (+)-2-octanol. Methylation analysis revealed 4-substituted Gal, 6-substituted Gal and 3-substituted GalN.

The  $^{13}$ C NMR spectrum of the polysaccharide (Fig. 1) demonstrated a regular structure. It contained signals for three sugar residues, including those for three anomeric carbons at  $\delta$  99.8, 103.7 and 106.0, one nitrogen-bearing carbon at  $\delta$  52.7 (C-2 of GalN), two unsubstituted ( $\delta$  62.3

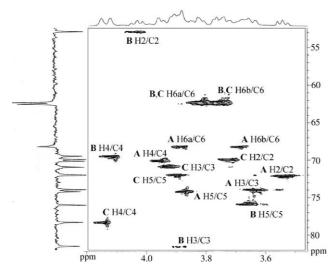

<sup>\*</sup> Corresponding author. Tel.: +7-095-9383613; fax: +7-095-1355328; e-mail: olgao@hotmail.ru



Figure 1. <sup>13</sup>C NMR spectrum of the O-polysaccharide of *P. stuartii* O49.

and  $\delta$  62.1) and one substituted HOCH<sub>2</sub> groups ( $\delta$  68.0) of hexoses and GalN residue (data of a DEPT-135 experiment, Fig. 2), 11 sugar-ring oxygen-bearing carbons in the region  $\delta$  70–82 and for one *N*-acetyl group at  $\delta$  23.7 (Me) and  $\delta$  176.2 (CO). Accordingly, the <sup>1</sup>H NMR spectrum contained signals for three anomeric protons at 4.96, 4.69 and 4.47 and a signal for one *N*-acetyl group at  $\delta$  2.05. As judged by the absence of signals within  $\delta$  82–88, all sugar residues are in pyranose form.<sup>7</sup>

The <sup>1</sup>H and <sup>13</sup>C NMR spectra of the O-polysaccharide were assigned using <sup>1</sup>H, <sup>1</sup>H COSY, TOCSY, RO-ESY, <sup>1</sup>H, <sup>13</sup>C HSQC and <sup>1</sup>H, <sup>13</sup>C HMBC experiments (Tables 1 and 2). The TOCSY spectrum demonstrated correlations of H-1 with all protons from H-2 to H-4 for all sugar residues. The COSY spectrum showed most of the correlations between the neighbouring protons



**Figure 2.** Part of an <sup>1</sup>H, <sup>13</sup>C HSQC spectrum of the O-polysaccharide of *P. stuartii* O49. The corresponding parts of the <sup>1</sup>H and DEPT spectra are shown along the axes. Arabic numerals refer to atoms in sugar residues denoted by capital letters as shown in Tables 1 and 2.

within each spin system but as soon as there were no H-4,H-5 correlations in COSY, signals of H-5, H-6a and H-6b have been assigned using data of the ROESY experiment (Fig. 3). The ROESY spectrum showed the H-4,H-5 *intra*-residue cross-peaks for α-Galp, β-Galp and β-GalpN at  $\delta$  4.14/3.89, 3.95/3.86 and 4.11/3.66, respectively. The signals of H-6a and H-6b were assigned basing on H-5,H-6a and H-5,H6b correlations in COSY ( $\delta$  3.89/3.77, 3.89/3.82 for α-Galp,  $\delta$  3.86/3.88, 3.86/3.69 for β-Galp,  $\delta$  3.66/3.77, 3.66/3.82 for β-Galp-NAc).

The  $J_{4,5}$  and  $J_{3,4}$  coupling constant values  $\sim 3$  Hz showed the *galacto*-configuration for all sugar residues. The  $J_{1,2}$  coupling constant values ( $\sim 3$  Hz for  $\alpha$ -Galp,  $\sim 8$  Hz for  $\beta$ -Galp and  $\beta$ -GalpN) enabled determination of the anomeric configurations of monosaccharides, which are as follows:  $\alpha$ -Galp,  $\beta$ -Galp and  $\beta$ -GalpNAc. The spin system of  $\beta$ -GalpN was distinguished by correlation of proton at the nitrogen-bearing carbon (H-2 at  $\delta$  4.02) to the corresponding carbon C-2 at  $\delta$  52.7 (data of the HSQC spectrum).

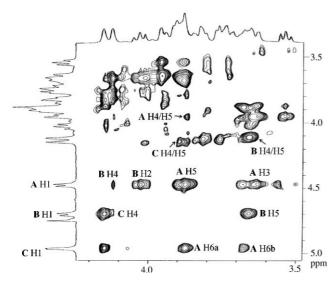
The  $^{13}$ C NMR spectrum was assigned using a  $^{1}$ H, $^{13}$ C HSQC experiment (Fig. 2). Significant downfield displacement of the signals for C-4  $\alpha$ -Galp (from  $\delta$  70.6 to  $\delta$  78.1), C-6  $\beta$ -Galp (from  $\delta$  62.2 to  $\delta$  68.0) and C-3  $\beta$ -GalpNAc (from  $\delta$  72.4 to  $\delta$  81.3), as compared to their position in the spectra of unsubstituted monomers, revealed the substitution pattern. The  $^{1}$ H,  $^{13}$ C HMBC spectrum showed the following *inter*-residue crosspeaks:  $\alpha$ -Galp H-1, $\beta$ -Galp C-6 at  $\delta$  4.96/68.0,  $\beta$ -Galp H-1, $\beta$ -GalpNAc C-3 at  $\delta$  4.47/81.3 and  $\beta$ -GalpN H-1,  $\alpha$ -Galp C-4 at  $\delta$  4.69/78.1. These data confirmed the glycosylation pattern and revealed the monosaccharide sequence in the repeating unit.

Therefore, the O-polysaccharide of *P. stuartii* O49 has the following structure:

$$\rightarrow$$
6)- $\beta$ -D-Gal $p(1\rightarrow 3)$ - $\beta$ -D-Gal $p$ NAc $(1\rightarrow 4)$ - $\alpha$ -D-Gal $p(1\rightarrow$ 

**Table 1.** <sup>1</sup>H NMR data ( $\delta$ , ppm) of the O-polysaccharide of *P. stuartii* O49

| Residue                                                           | H-1  | H-2  | H-3         | H-4  | H-5  | H-6a        | H-6b        |
|-------------------------------------------------------------------|------|------|-------------|------|------|-------------|-------------|
| $\mathbf{A} \rightarrow 6$ )- $\beta$ -Gal $p$ -(1 $\rightarrow$  | 4.47 | 3.54 | 3.65        | 3.95 | 3.86 | 3.88        | 3.69        |
| $\mathbf{B}$ → 3)-β-GalpNAc-(1 →                                  | 4.69 | 4.02 | $\sim 3.89$ | 4.11 | 3.66 | ~3.77       | $\sim$ 3.82 |
| $\mathbb{C} \rightarrow 4$ )- $\alpha$ -Gal $p$ -(1 $\rightarrow$ | 4.96 | 3.72 | 3.92        | 4.14 | 3.89 | $\sim 3.77$ | $\sim$ 3.82 |


Chemical shift for NAc is  $\delta$  2.05.

**Table 2.** <sup>13</sup>C NMR data ( $\delta$ , ppm) for the O-specific polysaccharide of *P. stuartii* O49

| Residue                                                           | C-1   | C-2  | C-3  | C-4  | C-5  | C-6               |  |
|-------------------------------------------------------------------|-------|------|------|------|------|-------------------|--|
| $A \rightarrow 6$ )- $\beta$ -Gal $p$ -(1 $\rightarrow$           | 106.0 | 71.8 | 73.8 | 70.0 | 74.0 | 68.0              |  |
| $\mathbf{B}$ → 3)-β-GalpNAc-(1 →                                  | 103.7 | 52.7 | 81.3 | 69.3 | 75.8 | 62.1a             |  |
| $\mathbb{C} \rightarrow 4$ )- $\alpha$ -Gal $p$ -(1 $\rightarrow$ | 99.8  | 69.7 | 70.8 | 78.1 | 71.8 | 62.3 <sup>a</sup> |  |

Chemical shifts for NAc are  $\delta$  23.7 (CH<sub>3</sub>) and 176.2 (CO).

<sup>&</sup>lt;sup>a</sup>Assignment could be interchanged.



**Figure 3.** Part of a ROESY spectrum of the O-polysaccharide of *P. stuartii* O49. The corresponding part of the <sup>1</sup>H NMR spectrum is shown along the axes. Arabic numerals refer to atoms in sugar residues denoted by capital letters as shown in Tables 1 and 2.

## 1. Experimental

# 1.1. Bacterial strain and growth

Providencia stuartii O49:H4, strain 5875/52 was obtained from the Hungarian National Collection of Medical Bacteria (National Institute of Hygiene, Budapest) and cultivated under aerobic conditions in tryptic soy broth supplemented with 0.6% yeast extract. The bacterial mass was harvested at the end of the logarithmic growth phase, centrifuged, washed with distilled water and lyophilised.

# 1.2. Isolation of the lipopolysaccharide and O-polysaccharide

The lipopolysaccharide was isolated from bacterial cells by phenol/water extraction<sup>6</sup> and purified by treatment with cold aq 50% CCl<sub>3</sub>COOH. After centrifugation, the supernatant was dialysed and freeze-dried.

The O-polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide (200 mg) with 2% HOAc (3 mL) for 1 h at  $100\,^{\circ}\text{C}$  followed by GPC of the water-soluble portion on a column (60×2.5 cm) of Sephadex G-50 in pyridinium acetate buffer (4 mL pyridine and  $10\,\text{mL}$  HOAc in 1 L water). The yield of the O-polysaccharide was 22.7% of the lipopolysaccharide weight.

## 1.3. Monosaccharide analysis

The polysaccharide (0.5 mg) was hydrolysed with 2 M CF<sub>3</sub>CO<sub>2</sub>H (0.5 mL, 120 °C, 2 h) and the alditol acetates derived were analysed by GLC using a temperature program from 180 to 290 °C at 10 °C min<sup>-1</sup>. For determination of the absolute configuration, the O-polysaccharide (0.5 mg) was hydrolysed with 2 M CF<sub>3</sub>CO<sub>2</sub>H as above, N-acetylated (400 μL NaHCO<sub>3</sub>, 60 μL Ac<sub>2</sub>O, 0 °C, 1 h), subjected to 2-octanolysis<sup>9</sup> [100 μL (*S*)-2-octanol, 15 μL CF<sub>3</sub>CO<sub>2</sub>H, 120 °C, 16 h], acetylated and analysed by GLC as above. The O-polysaccharide (0.5 mg) was hydrolysed, treated with D-galactose oxidase in 0.1 M phosphate buffer pH 6.3 at 37 °C for 2 h, <sup>10</sup> reduced with NaBH<sub>4</sub>, acetylated and analysed by GLC.

#### 1.4. Methylation analysis

Methylation of the O-polysaccharide (0.5 mg) was performed according to the Hakomori procedure, <sup>11</sup> the product was recovered using a Sep-Pak cartridge, hydrolysed with 2 M CF<sub>3</sub>CO<sub>2</sub>H at 120 °C for 2 h, the partially methylated monosaccharides were reduced with NaBH<sub>4</sub>, acetylated and analysed by GLC–MS.

# 1.5. NMR spectroscopy

NMR experiments were carried out at 50 °C for solutions in  $D_2O$  with internal TSP ( $\delta_H$  0) and external

acetone ( $\delta_{\rm C}$  31.45) as references. The mixing time of 300 ms was used for ROESY. All spectra were recorded using Bruker DRX-500 NMR instrument and XwinNMR software on SGI Indy/Irix 5.3. The carbon chemical shifts data fit was performed using BIOPSEL software and database.<sup>12</sup>

#### Acknowledgements

This work was supported by grants RF NSh-1557.2003.3, 02-04-48118 of the Russian Foundation for Basic Research and 3-P05-037-22 of the Science Research Committee (KBN, Poland). A.T. is supported by the Foundation For Polish Science (FNP).

#### References

Penner, J. L.; Hinton, N. A.; Duncan, I. B. R.; Hennessy, J. N.; Whiteley, G. R. J. Clin. Microbiol. 1979, 9, 11–14.

- Ewing, W. H. In *Identification of Enterobacteriaceae*;
   Edwards, P. R., Ed.; Elsevier: New York, 1986; pp 454–459.
- Kocharova, N. A.; Torzewska, A.; Zatonsky, G. V.; Blaszczyk, A.; Bystrova, O. V.; Shashkov, A. S.; Knirel, Y. A. Carbohydr. Res. 2004, 339, 195–200.
- Kocharova, N. A.; Blaszczyk, A.; Zatonsky, G. V.; Torzewska, A.; Bystrova, O. V.; Shashkov, A. S.; Knirel, Y. A.; Rozalski, A. Carbohydr. Res. 2004, 339, 409–413.
- Torzewska, A.; Kocharova, N. A.; Zatonsky, G. V.; Blaszczyk, A.; Bystrova, O. V.; Shashkov, A. S.; Knirel, Y. A.; Rozalski, A. Carbohydr. Res., in press.
- Westphal, O.; Jann, K. Methods Carbohydr. Chem. 1965, 5, 83–89.
- 7. Bock, K.; Pedersen, C. Adv. Carbohydr. Chem. Biochem. 1983, 41, 27-66.
- Lipkind, G. M.; Shashkov, A. S.; Knirel, Y. A.; Vinogradov, E. V.; Kochetkov, N. K. Carbohydr. Res. 1988, 175, 59–75.
- 9. Leontein, K.; Lönngren, J. Methods Carbohydr. Chem. 1993, 9, 87-89.
- 10. Roth, H.; Segal, S.; Bertoli, D. Anal. Biochem. 1965, 10, 35–52.
- 11. Hakomori, S. J. Biochem. 1964, 55, 205–208.
- Toukach, F. V.; Shashkov, A. S. Carbohydr. Res. 2001, 335, 101–114.